Reactions of Cyclooctatetraene Dibromides with N-Morpholino-carbamodithioate, Ethyl Xanthogenate, and Dithioacetate

J. M. Bickert and K. Hartke
Marburg, Institut für Pharmazeutische Chemie, Universität
Received January 13th, 1997 respectively April 24th, 1997

Condensation of valence tautomer $\mathbf{1}[1-3]$ with 2 [4] in acetone gives rise to (exo-8-bromo-1 $\alpha, 7 \alpha$-bicyclo[5.1.0]octa-2,4-diene- 6α-yl)- N-morpholinocarbamodithioate ($3,5.6 \%$) and (trans-bicyclo[4.2.0]octa-2,4-diene-7,8-diyl)-bis-(N-morpho-lino-carbamodithioate) $(4,18 \%)$. In acetone at $-7^{\circ} \mathrm{C}$, valence tautomer 5 is trans-formed to 13% of 4 and only traces of 3 while unreacted 5 undergoes valence tautomerism to 1 at about $0^{\circ} \mathrm{C}$ during workup $[3,5]$. Both condensations are accompanied by extensive decomposition which is generally observed with 1 and 5.

Scheme 1

Reactions of potassium ethyl xanthogenate (6) with 1 and 5 lead to even more products. Among these, carbodithioic ester 7 and cis-9,11-dithiabicyclo[6.3.0]undeca-2,4,6-triene-10-one (11) are rather unexpected. The monocyclic dibromide 5 in acetone only yields small amounts of the bromo substituted bicyclo[5.1.0]octa-2,4-diene 8; in DMF, formation of $\mathbf{8}$ is suppressed completely.

Scheme 2

NMR analysis of $\mathbf{3}$ together with force field computations [6] substantiate both constitution and conformation given by the formula. H, H coupling constants in the three-membered ring are similar to those of known cyclopropanes [7]. ${ }^{3} J_{1^{\prime}-\mathrm{H}, 2^{\prime}-\mathrm{H}}=7.2 \mathrm{~Hz}$ and ${ }^{3} J_{6^{\prime}-\mathrm{H}, 7^{\prime}-\mathrm{H}}=5.3 \mathrm{~Hz}$ are quite small, but related substances have coupling constants in the same range [8, 9]. Considering the δ value of $\mathrm{C}-1^{\prime}\left(27.82 \mathrm{ppm}^{2} \mathrm{CDCl}_{3}\right)$, $\mathrm{C}-7$ ' shows a striking downfield shift ($\delta=50.30 \mathrm{ppm}$ in CDCl_{3}); again, there are previous examples for this observation $[9,10]$. The same arguments are valid for structures 8 and 9.

Assignation of the bromo substituent to position 8^{\prime} in $\mathbf{3}$ is suggested by the negligible differences between the chemical shifts of $8^{\prime}-\mathrm{H}\left(\delta=4.06 \mathrm{ppm}\right.$ in $\left.\mathrm{CDCl}_{3}\right), \mathrm{C}-8^{\prime}(\delta=23.73 \mathrm{ppm}$ in $\left.\mathrm{CDCl}_{3}\right)$, and their equivalents in $8(8-\mathrm{H}, \delta=4.01 \mathrm{ppm} ; \mathrm{C}-8$, $\delta=23.34 \mathrm{ppm} ; \mathrm{CDCl}_{3}$).

In contrast to the condensations discussed so far, the reaction of 1 with sodium dithioacetate (12) follows a pathway leading to disubstituted product $\mathbf{1 3}$ only. It is remarkable that trans-7,8-bis(dithioacetoxy)cycloocta-1,3,5-triene (13) persists in the monocyclic form while all other 7,8 disubstituted cyclo-octa-1,3,5-trienes (except if fused $[1,2,3,11]$) experience valence tautomerism to 7,8 disubstituted bicyclo [4.2.0]octa2,4 -dienes [3,5,12, 13]. Attempted ${ }^{1} \mathrm{H}$ NMR observation of 13 tautomerizing to bicyclus 14 at elevated temperatures (50$90^{\circ} \mathrm{C}$; [$\left.\mathrm{D}_{5}\right]$ bromobenzene) failed due to lacking thermal stability of 13 ; when the sample had cooled down again, another run demonstrated that irreversible decomposition had taken place.

14

Scheme 3
trans Configuration of $\mathbf{1 3}$ is deduced easily from the ${ }^{13} \mathrm{C}$ NMR data because $\mathrm{C}-7$ and $\mathrm{C}-8,7-\mathrm{CH}_{3}$ and $8-\mathrm{CH}_{3}$ each display a signal of their own. Since the $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ spectrum of 13 closely resembles the $60 \mathrm{MHz}{ }^{1} \mathrm{H}$ spectrum of its dibromo analogue 5 given by Huisgen and Boche [5], it appears very unlikely that this spectrum belongs to a mixture of 5 and its cis isomer as it was claimed by Huisgen and Boche.

Endolexo assignations for protons in 7 and 8 positions in 4, $\mathbf{1 0}$, and 13 are based on the empirical rule that in 7,8 disubstituted cycloocta-1,3,5-trienes [5], bicyclo[4.2.0]octa2,4 -dienes [3], and bicyclo[4.2.0]oct-2-enes [14, 15] 7,8 endo protons will be found at higher field than the exo ones.

For a discussion of plausible reaction mechanisms leading to the products $\mathbf{3}, 4,7,8-11$, and 13 , see [3] and, in part, [1, 2].

We wish to express our gratitude to the Badische Anilin- und Soda-Fabrik for a generous gift of cyclooctatetraene and to the Fonds der Chemischen Industrie for financial support.

Experimental

Fourier transformed IR spectra: Nicolet 510 P spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra: Jeol JMN GX $400(399.8 \mathrm{MHz}$ for
${ }^{1} \mathrm{H}, 100.5 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$); the chemical shifts are given as δ values in ppm with TMS as the internal standard. Mass spectroscopy (MS): Micromass 7070H. Mass spectra were run at room temperature unless stated otherwise. Elemental analyses: carbon and hydrogen, Labormatic/Wösthoff CH analyzer; nitrogen, Hewlett-Packard CHN Autoanalyzer 185. 1 and 5 were prepared according to [1,3], for 2 see [4]. Solvent ratios of eluents denote V / V mixtures.

Reaction of 1 with 2

trans-7,8-Dibromobicyclo[4.2.0]octa-2,4-diene (1) (1.32 g, 5 mmol) and $\operatorname{sodium} \mathrm{N}$-morpholinocarbamodithioate (2) (2.04 $\mathrm{g}, 11 \mathrm{mmol})$ are stirred in acetone $(30 \mathrm{ml})$ at room temperature for 22 h . After addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$, the precipitated salts are removed by filtration. The solvent mixture is distilled off, and the residue is separated by CC using pentane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $=1+3$ until elution of 3 begins; then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is employed, and acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=1+9$ follows as soon as $\mathbf{4}$ appears. Progress of CC is observed by TLC with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
(Exo-8-bromo-1 $\alpha, 7 \alpha$-bicyclo[5.1.0]octa-2,4-diene- $6 \alpha-y l$)- N morpholinocarbamodithioate (3)
$195 \mathrm{mg}(6 \%)$ of a highly viscous yellow oil. Crystallization from acetone/pentane yields a small amount of white crystals, m. p. $160-163^{\circ} \mathrm{C}$ (beginning dec. $>120^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR confirms identity of oil and crystals. - IR (film): $v\left(\mathrm{~cm}^{-1}\right)=1462$, 1420, 1268, 1228, 1215, 1114, 1029, 997, 731. - ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 6.22\left(\mathrm{dd}, J=11.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.95(\mathrm{dd}, J=$ $\left.10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 5.89\left(\mathrm{dd}, J=10.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right)$, $5.61\left(\mathrm{dd}, J=11.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 5.44(\mathrm{dd}, J=8.0,5.3$ $\mathrm{Hz}, 1 \mathrm{H}, 6 \mathrm{H}), 4.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH} \underline{H}_{2}\right), 4.06($ pseudo $\mathrm{t}=\mathrm{dd}, J \approx$ $\left.4.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}, 8^{\prime}-\mathrm{H}\right), 3.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.76$ (broad s, 4H, OCH_{2}), $2.76\left(\mathrm{dd}, J=5.3, \approx 4.0 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}\right)$, 1.78 (ddd, $J=10.2,7.2, \approx 4.0 \mathrm{~Hz}, 1 \mathrm{H}, 1^{1}-\mathrm{H}$). $-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 197.4(\mathrm{C}=\mathrm{S}), 133.8\left(\mathrm{C}-2^{\prime}\right), 131.2\left(\mathrm{C}-4^{\prime}\right), 128.9(\mathrm{C}-$ $\left.5^{\prime}\right), 125.3(\mathrm{C}-3 '), 66.2\left(\mathrm{OCH}_{2}\right), 50.8\left(\mathrm{C}-6^{\prime}\right), 50.3\left(\mathrm{C}-7{ }^{\prime}\right.$ and $\left.\mathrm{NCH}_{2}\right), 27.8\left(\mathrm{C}-1^{\prime}\right), 23.7\left(\mathrm{C}-8^{\prime}\right)$. All NMR assignations are confirmed by H,H and C,H COSY. - MS (chemical ionization, isobutane $): m / z(\%)=348\left(2 ; \mathrm{M}^{+}+1,{ }^{81} \mathrm{Br}\right), 346\left(3 ; \mathrm{M}^{+}+1\right.$, $\left.{ }^{79} \mathrm{Br}\right), 266$ (60), 132 (100). - HRMS: ${ }^{12} \mathrm{C}_{13} \mathrm{H}_{16}{ }^{79} \mathrm{BrNOS}_{2}+\mathrm{H}$, calcd. 345.9935 , found 345.9944 ± 0.0100.
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{BrNOS}_{2}$ calcd. C 45.09 H 4.66
(346.30) found $\mathrm{C} \quad 45.68 \mathrm{H} 4.68$.
(trans-Bicyclo[4.2.0]octa-2,4-diene-7,8-diyl)-bis-(N-morpholinocarbamodithioate) (4)
$789 \mathrm{mg}(18 \%)$ of amorphous pale yellow flakes, m.p. 62-76 ${ }^{\circ} \mathrm{C}$ (without dec.). - IR $(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right)=1420,1267,1229$, 1113, 996. $-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 5.99(\mathrm{dd}, J=10.2,5.6 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 5.84\left(\mathrm{dd}, J=9.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 5.75(\mathrm{dd}, J=$ $\left.9.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 5.61\left(\mathrm{dd}, 10.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.22$ (pseudo $t=\mathrm{dd}, J=8.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}$ exo), 5.09 (dd, $J=$ $8.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}, 8^{\prime}-\mathrm{H}$ endo $), \approx 4.2\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.93(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{NCH}_{2}$ and $\left.1^{\prime}-\mathrm{H}\right), 3.75\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.23(\mathrm{ddd}, J=$ $\left.11.2,8.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}, 6^{6}-\mathrm{H}\right) .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 197.0(\mathrm{C}=\mathrm{S})$, 195.9 (C=S), 124.7 (C-2'), 124.5 (C-3'), 124.4 (C-5'), 122.9 (C-4'), 66.2 (broad, OCH_{2}), 58.5 (C-7'), $54.2\left(\mathrm{C}-8^{\prime}\right), 50.8$ (broad, NCH_{2}), $40.4\left(\mathrm{C}-6^{\prime}\right), 37.5\left(\mathrm{C}-1^{\prime}\right)$. Assignations are corroborated by H,H and C,H COSY. - MS $\left(180^{\circ} \mathrm{C}\right) \mathrm{m} / \mathrm{z}(\%)$: $428\left(5 ; \mathrm{M}^{+}\right), 188(28), 130(92), 87(21), 86(54), 78(21), 76$
(100). HRMS: ${ }^{12} \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{4}$, calcd. 428.0721, found 428.0722 ± 0.0100.

Reaction of 5 with 2

trans-7,8-Dibromocycloocta-1,3,5-triene (5) (1.32g, 5 mmol) and $2(2.04 \mathrm{~g}, 11 \mathrm{mmol})$ are allowed to condense in acetone at $-7^{\circ} \mathrm{C}$ for 7 days. Workup is performed as described above, giving rise to $\mathbf{1}(21 \%), \mathbf{3}$ (traces), and $\mathbf{4}(13 \%)$.

Reaction of 1 with 6

trans-7,8-Dibromobicyclo[4.2.0]octa-2,4-diene (1) (1.32 g, 5 mmol) and potassium ethyl xanthogenate (6) ($1.76 \mathrm{~g}, 11$ mmol) are mixed in acetone (30 ml). For reaction conditions and removal of salts see above (3, 4). CC: After elution with pentane (150 ml), polarity is increased to pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=$ $19+1$, and, as soon as 8 turns up, to $9+1$. When elution of 8 is completed, pentane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=4+1$ is employed, and once 9 appears, a $7+3$ mixture is used. Thin layer chromatography requires pentane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=9+1$ for $\mathbf{7 , 8}, \mathbf{9}, 10$ and $4+1$ for 9 , 11. Fractions 9 and 10 may overlap.

O-Ethyl S-ethyl carbodithioate (7)

86 mg (11%) of a yellow, pungently smelling oil which is volatile in vacuo at room temperature. $-\operatorname{IR}($ film $): v\left(\mathrm{~cm}^{-1}\right)=$ 2980, 2929, 1470, 1212, 1112, 1063. - ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $4.65\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.12(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{SCH}_{2} \mathrm{CH}_{3}$), $1.42\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.34(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $215.0(\mathrm{C}=\mathrm{S})$, $69.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 30.1\left(\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 13.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 13.5$ $\left(\mathrm{SCH}_{2} \mathrm{CH}_{3}\right) .-\mathrm{MS}: m / z(\%)=150\left(100 ; \mathrm{M}^{+}\right), 122(23), 77$ (21), 62 (21), 61 (29). HRMS: ${ }^{12} \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{OS}_{2}$, calcd. 150.0173, found 150.0173 ± 0.0100.
exo-8-Bromo-6 α-ethoxythiocarbonylthio- $1 \alpha, 7 \alpha$-bicyclo-[5.1.0]octa-2,4-diene ($\mathbf{8}$)
$25 \mathrm{mg}(1.6 \%)$ of a yellowish oil. IR (film): $v\left(\mathrm{~cm}^{-1}\right)=1651$, 1219, 1147, 1111, 1047, 715. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 6.21$ (dd, $J=11.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.87(\mathrm{~m}, 2 \mathrm{H}, 4-, 5-\mathrm{H}), 5.62(\mathrm{~m}$ in which dd is recognizable, $J=11.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}$), 5.06 (m, $1 \mathrm{H}, 6-\mathrm{H}$), $4.67\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$), 4.01 (pseudo $\mathrm{t}=\mathrm{dd}, J \approx 4.0,4.0 \mathrm{~Hz}, 8-\mathrm{H}), 2.66(\mathrm{dd}, J \approx 5.5,4.0 \mathrm{~Hz}, 7-\mathrm{H})$, $1.79(\mathrm{ddd}, J=10.2,7.2, \approx 4.0 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 1.43(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 214.7(\mathrm{C}=\mathrm{S}), 133.6$ (C-2), $131.3(\mathrm{C}-4), 128.0(\mathrm{C}-5), 125.4(\mathrm{C}-3), 70.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 50.0 (C-6), 48.9 (C-7), 27.6 (C-1), 23.3 (C-8), 13.83 $\left(\mathrm{OCH}_{2} \mathrm{C}_{3}\right)$. Compare assignations for 3. - MS (chemical ionization, isobutane): $\mathrm{m} / \mathrm{z}(\%)=307\left(3 ; \mathrm{M}^{+}+1,{ }^{81} \mathrm{Br}\right), 305(6$; $\left.\mathrm{M}^{+}+1,{ }^{79} \mathrm{Br}\right), 225(21), 197(40), 185$ (96; ${ }^{81} \mathrm{Br}$), 183 (100; $\left.{ }^{79} \mathrm{Br}\right)$. - HRMS: ${ }^{12} \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{OS}_{2}$, calcd. 225.0408, found 225.0410 ± 0.0100.
trans-7,8-Bis(ethoxythiocarbonylthio)bicyclo[4.2.0]octa-2,4diene (10)
$523 \mathrm{mg}(30 \%)$ of a viscous yellow oil. - IR: $v\left(\mathrm{~cm}^{-1}\right)=1212$, 1146, 1112, 1059. - ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 6.00(\mathrm{dd}, J=9.8,5.6$ $\mathrm{Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 5.84(\mathrm{dd}, J=9.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 5.68(\mathrm{dd}$, $J=9.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.58(\mathrm{dd}, J=9.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$,
4.83 (pseudo $t=\mathrm{dd}, J=9.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}$ exo), 4.62 (m, $5 \mathrm{H}: 8-\mathrm{H}$ endo and $\mathrm{OCH}_{2} \mathrm{CH}_{3}$, the latter as 2 t with $J=7.1 \mathrm{~Hz}$ and $\Delta \delta=2.4 \mathrm{~Hz}, 7-\mathrm{OC}_{2} \mathrm{CH}_{3}$ endo being upfield), 3.78 (m , $1 \mathrm{H}, 6-\mathrm{H}$) , 3.17 (ddd, $J=10.9,8.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}$), 1.43 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 8-\mathrm{OCH}_{2} \mathrm{CH}_{3}$ exo $), 1.41(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 7-$ $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ endo). Coupling between $1-\mathrm{H}, 8-\mathrm{H}$ and $7-\mathrm{H}, 8-\mathrm{H}$ respectively is proven by $\mathrm{H}, \mathrm{H}-\mathrm{COSY} .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: 213.3, 212.0 (C=S), 125.0, $123.2(\mathrm{C}-2,-5), 124.3(\mathrm{C}-4), 124.2$ (C-3), 70.2, $70.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 57.6(\mathrm{C}-7), 54.0(\mathrm{C}-8), 39.1$ (C-6), $37.0(\mathrm{C}-1), 13.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$. The NMR spectra are interpreted on the analogy of $\mathbf{1}[3] .-\mathrm{MS}\left(100{ }^{\circ} \mathrm{C}\right): \mathrm{m} / \mathrm{z}(\%)=$ $346\left(2 ; \mathrm{M}^{+}\right), 147$ (100), 135 (48), 119 (70), 103 (21), 91 (45). - HRMS: ${ }^{12} \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}_{4}$, calcd. 346.0190 , found $346.0179 \pm$ 0.0100 .

6 α,exo-8-Bis(ethoxythiocarbonylthio)- $1 \alpha, 7 \alpha$-bicyclo-[5.1.0]octa-2,4-diene (9)
$209 \mathrm{mg}(12 \%)$ of a viscous yellow oil. - IR: $v\left(\mathrm{~cm}^{-1}\right)=2982$, 1210, $1145,1112,1042 .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 6.22(\mathrm{dd}, J=$ $11.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.94(\mathrm{~m}, 2 \mathrm{H}, 4-, 5-\mathrm{H}), 5.68(\mathrm{~m}, 1 \mathrm{H}, 3-$ H), $5.05(\mathrm{dd}, J=8.7, \approx 5.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), \approx 4.6(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 3.58 (pseudo $\mathrm{t}=\mathrm{dd}, J=4.8, \approx 4.6 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}$), $2.43(\mathrm{dd}, J \approx 5.4, \approx 4.8 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 1.67(\mathrm{ddd}, J=9.3,7.1$, $\approx 4.6 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), \approx 1.4\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 214.7(\mathrm{C}=\mathrm{S}), 133.7(\mathrm{C}-2), 131.1(\mathrm{C}-4), 128.8(\mathrm{C}-$ 5), $125.5(\mathrm{C}-3), 69.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 49.7,48.4(\mathrm{C}-6,-7), 26.2$, $25.4(\mathrm{C}-1,-8), 13.83\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$. See 3, 8. - MS $\left(80^{\circ} \mathrm{C}\right): \mathrm{m} /$ $z(\%)=346\left(3 ; \mathrm{M}^{+}\right), 225(71), 147(100), 137(53), 135(97)$, 119 (53), 103 (56), 91 (85). - HRMS: ${ }^{12} \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}_{4}$, calcd. 346.0190 , found 346.0182 ± 0.0100.
cis-9,11-Dithiabicyclo[6.3.0]undeca-2,4,6-triene-10-one (11)

147 mg of a brownish yellow oil which is still impure according to ${ }^{1} \mathrm{H}$ NMR. - IR: $v\left(\mathrm{~cm}^{-1}\right)=1685,1653,1221,1146,1047$, 914, 872, 755, 651. - ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 6.14$ (m in which d can be identified, $J=11.5 \mathrm{~Hz}, 2 \mathrm{H}, 3-, 6-\mathrm{H}$), 6.01 (dd, $J=3.0$, 1.7 Hz , probably part of a scarcely resolved $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system, $2 \mathrm{H}, 4-, 5-\mathrm{H}), 5.95(\mathrm{~m}$ in which d is recognizable, $J=11.5 \mathrm{~Hz}$, $2 \mathrm{H}, 2-, 7-\mathrm{H}), 5,21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{I}-, 8-\mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): 194.3 (C=O), 129.9, 128.6, 127.4 (C-2, -3, -4, -5, -6, -7), 55.5 $(\mathrm{C}-1,-8) .-\mathrm{MS}\left(70{ }^{\circ} \mathrm{C}\right): \mathrm{m} / \mathrm{z}(\%)=196\left(7 ; \mathrm{M}^{+}\right), 168(21), 135$ (29), 91 (100). - HRMS: ${ }^{12} \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{OS}_{2}$, calcd. 196.0017, found 196.0041 ± 0.0100.

trans-7,8-Bis(dithioacetoxy)cycloocta-1,3,5-triene (13)

A solution of dithioacetic acid in THF (0.48 g of dithioacetic acid, 6 mmol) and sodium hydrogen carbonate (0.59 g , $7 \mathrm{mmol})$ are mixed and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$. To this suspension of dithioacetate (12), trans-7,8-dibromobi-cyclo[4.2.0]octa-2,4-diene (1) $(0.79 \mathrm{~g}, 3 \mathrm{mmol})$ is added with vigorous stirring. Because of the stench of dithioacetic acid, it is advisable to close the flask loosely with a stopper. After 20 h at room temperature, the reaction mixture is poured into water containing a trace of potassium hydroxide, which then is extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer is washed with water, dried over MgSO_{4}, and evaporated in vacuo at room temperature. Pentane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=4+1$ is a suitable eluent for thin layer chromatography. Column chromatography using the
same mixture separates $346 \mathrm{mg}(40 \%)$ of an extremely viscous reddish brown oil which smells very unpleasant and tends to decompose. - IR (film): $v\left(\mathrm{~cm}^{-1}\right)=3008,1431,1366,1193$, $1067,860,826,751,734,700,647 .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm})=6.02(\mathrm{~m}, 2 \mathrm{H}, 2-, 5-\mathrm{H}), 5.86(\mathrm{dd}, J=3.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}$, $3-, 4-\mathrm{H}), 5.81(\mathrm{~m}, 2 \mathrm{H}, 1-, 6-\mathrm{H}), 5.16$ (ddd, $J=9.3,6.9,1.3$ $\mathrm{Hz}, 1 \mathrm{H}$, exo-7-H), 4.84 (ddd, $J=8.9,5.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, endo-$8-\mathrm{H}), 2.73$ (s, 3 H , exo- $8-\mathrm{CH}_{3}$), $2.32\left(\mathrm{~s}, 3 \mathrm{H}\right.$, endo- $7-\mathrm{CH}_{3}$). Coupling constants of $\delta=5.86$ are probably just line distances of an ill resolved spin system; see 11. - ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $(\mathrm{ppm})=233.0(\mathrm{C}=\mathrm{S}), 131.2,129.5,127.2,127.1,126.3$ (5 signals for 6 olefinic carbon atoms $\mathrm{C}-2,-3,-4,-5,-6,-7$), $57.5,57.2(\mathrm{C}-1,-8), 38.6,29.8\left(\mathrm{CH}_{3}\right) .-\mathrm{MS}\left(30^{\circ} \mathrm{C}\right): m / z(\%)=$ $286\left(0.3 ; \mathrm{M}^{+}\right), 194(26), 135(53), 116(33), 104(29), 91$ (95), 78 (31), 59(100). - Analysis: $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~S}_{4}$ (286.48), calcd. C 50.31 H 4.93, found C 50.38 , H 4.68 .

References

[1] K. Hartke, J. M. Bickert, S. A. Warda, Z. Naturforsch., in press
[2] J. M. Bickert, K. Hartke, Sulfur Letters 20 (1997) 165
[3] J. M. Bickert, Ph. D. Thesis: Die Dibromide des Cyclooctatetraens und ihre Umlagerungen bei nukleophilen Substitutionen, Marburg 1996, Cuvillier Verlag Göttingen 1996 (ISBN 3-89588-707-2)
[4] U. Kraatz, Methoden Org. Chem. (Houben-Weyl), G. Thieme Stuttgart 1983, Vol. E4,4th ed., p. 460
[5] R. Huisgen, G. Boche, Tetrahedron Lett. 1965, 1769. For data of 5, also see [1]; concerning reversibility, or irreversibility of the tautomerism in question, compare [3]
[6] Force field computations were carried out with the Sybyl 6.1 programme (Tripos Associates Ltd.) by M. Fink, to whom we are indebted
[7] K. M. Crecely, V. S. Watt, J. H. Goldstein, J. Molecul. Spectr. 30 (1969) 184
[8] R. F. Childs, A. Varadarajan, Can. J. Chem. 63 (1985) 418
[9] P. N. Culshaw, M. Dalton, F. MacCorquodale, J. C. Walton, J. Chem. Soc., Perkin Trans. II 1990, 531
[10] B. Decock-Le Révérend, M. Durand, R. Merényi, Bull. Soc. Chim. 1978 II, 369
[11] L. Moegel, W. Schroth, B. Werner, J. Chem. Soc., Chem. Comm. 1978, 57
[12] Valence tautomerism of a number of cycloocta-1,3,5trienes is discussed in: R. Huisgen, G. Boche, A. Dahmen, W. Hechtl, Tetrahedron Lett. 1968, 5215
[13] R. Huisgen, A. Dahmen, H. Huber, Tetrahedron Lett. 1969, 1461; A. Dahmen, R. Huisgen, Tetrahedron Lett. 1969, 1465
[14] B. B. Snider, Th. C. Harvey, J. Org. Chem. 59 (1994) 504
[15] B. C. Söderberg, L. S. Hegedus, M. A. Sierra, J. Am. Chem. Soc. 112 (1990) 4364

Address for Correspondence:
Prof. Dr. K. Hartke
Institut für Pharmazeutische Chemie
Universität Marburg
Marbacher Weg 6
D-35032 Marburg/Lahn

